Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Microb Genom ; 9(5)2023 05.
Article in English | MEDLINE | ID: covidwho-2326007

ABSTRACT

Most biologically relevant and diagnostic mutations in the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genome have been identified in the S gene through global genomic surveillance efforts. However, large-scale whole-genome sequencing (WGS) is still challenging in developing countries due to higher costs, reagent delays and limited infrastructure. Consequently, only a small fraction of SARS-CoV-2 samples are characterized through WGS in these regions. Here, we present a complete workflow consisting of a fast library preparation protocol based on tiled amplification of the S gene, followed by a PCR barcoding step and sequencing using Nanopore platforms. This protocol facilitates fast and cost-effective identification of main variants of concern and mutational surveillance of the S gene. By applying this protocol, report time and overall costs for SARS-CoV-2 variant detection could be reduced, contributing to improved genomic surveillance programmes, particularly in low-income regions.


Subject(s)
COVID-19 , Nanopores , Humans , SARS-CoV-2/genetics , Cost-Benefit Analysis , COVID-19/diagnosis
2.
East Mediterr Health J ; 29(4): 262-270, 2023 Apr 27.
Article in English | MEDLINE | ID: covidwho-2322614

ABSTRACT

Background: The B.1.1.7 SARS-CoV-2 variant results in spike gene target failure (SGTF) in reverse transcription-quantitative polymerase chain reaction (RT-PCR) assays. Few studies have been published on the clinical impact of B.1.1.7/SGTF. Aims: To assess the incidence of B.1.1.7/SGTF and its associated clinical characteristics among hospitalized COVID-19 patients. Methods: This observational, single-centre, cohort study was conducted between December 2020 and February 2021 and included 387 hospitalized COVID-19 patients. The Kaplan-Meier method was used for survival analysis, and logistic regression to identify risk factors associated with B.1.1.7/SGTF. Results: By February 2021, B.1.1.7/SGTF (88%) dominated the SARS-CoV-2 PCR results in a Lebanese hospital. Of the 387 eligible COVID-19 patients confirmed by SARS-CoV-2 RT-PCR, 154 (40%) were non-SGTF and 233 (60%) were B.1.1.1.7/SGTF; this was associated with a higher mortality rate among female patients [22/51 (43%) vs 7/37 (19%); P = 0.0170]. Among patients in the B.1.1.7/SGTF group, most were aged ≥ 65 years [162/233 (70%) vs 74/154 (48%); P < 0.0001]. Independent predictors of B.1.1.7/SGTF infection were hypertension (OR = 0.415; CI: 0.242-0.711; P = 0.0010), age ≥ 65 years (OR = 0.379; CI: 0.231-0.622; P < 0.0001), smoking (OR = 1.698; CI: 1.023-2.819; P = 0.0410), and cardiovascular disease (OR = 3.812; CI: 2.215-6.389; P < 0.0001). Only non-SGTF patients experienced multi-organ failure [5/154 (4%) vs 0/233 (0%); P = 0.0096]. Conclusion: There was a clear difference between the clinical features associated with B.1.1.7/SGTF and non-SGTF lineages. Tracking viral evolution and its clinical impact is crucial for proper understanding and management of the COVID-19 pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Female , COVID-19/epidemiology , Cohort Studies , Pandemics , Lebanon/epidemiology
3.
Front Microbiol ; 13: 1089399, 2022.
Article in English | MEDLINE | ID: covidwho-2238422

ABSTRACT

Introduction: The world is still struggling against the pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in 2022. The pandemic has been facilitated by the intermittent emergence of variant strains, which has been explained and classified mainly by the patterns of point mutations of the spike (S) gene. However, the profiles of insertions/deletions (indels) in SARS-CoV-2 genomes during the pandemic remain largely unevaluated yet. Methods: In this study, we first screened for the genome regions of polymorphic indel sites by performing multiple sequence alignment; then, NCBI BLAST search and GISAID database search were performed to comprehensively investigate the indel profiles at the polymorphic indel hotspot and elucidate the emergence and spread of the indels in time and geographical distribution. Results: A polymorphic indel hotspot was identified in the N-terminal domain of the S gene at approximately 22,200 nucleotide position, corresponding to 210-215 amino acid positions of SARS-CoV-2 S protein. This polymorphic hotspot was comprised of adjacent 3-base deletion (5'-ATT-3'; Spike_N211del) and 9-base insertion (5'-AGCCAGAAG-3'; Spike_ins214EPE). By performing NCBI BLAST search and GISAID database search, we identified several types of tandem repeats of the 9-base insertion, creating an 18-base insertion (Spike_ins214EPEEPE, Spike_ins214EPDEPE). The results of the searches suggested that the two-cycle tandem repeats of the 9-base insertion were created in November 2021 in Central Europe, whereas the emergence of the original one-cycle 9-base insertion (Spike_ins214EPE) would date back to the middle of 2020 and was away from the Central Europe. The identified 18-base insertions based on 2-cycle tandem repeat of the 9-base insertion were collected between November 2021 and April 2022, suggesting that these mutations could not survive and have been already eliminated. Discussion: The GISAID database search implied that this polymorphic indel hotspot to be with one of the highest tolerability for incorporating indels in SARS-CoV-2 S gene. In summary, the present study identified a variable number of tandem repeat of 9-base insertion in the N-terminal domain of SARS-CoV-2 S gene, and the repeat could have occurred at different time from the insertion of the original 9-base insertion.

4.
Journal of Bacteriology and Virology ; 52(4):145-148, 2022.
Article in Korean | EMBASE | ID: covidwho-2237385

ABSTRACT

As the coronavirus disease 2019 (COVID-19) spread worldwide, variants viruses are constantly emerging. And there has been a growing interest in the study of variant viruses, for the necessity of response to emergence and diffusion of new coronavirus variants. So, we conducted a survey of variant proportions of SARS-CoV-2 on positive samples of confirmed cases by Real-time Polymerase Chain Reaction (Real-time PCR). From December 26, 2021 to April 2, 2022, a total of 819 SARS-CoV-2 variants of concern (VOCs) were identified in COVID-19 positive samples. In the 2nd week of January 2022, detection rate of the Omicron subvariant BA.1 was 58.1%, overtaking Delta variant to become dominant type. However, in the 5th week of March, detection rate of another Omicron subvariant BA.2 was 75.9%, became dominant variant. These results imply that BA.1 was a dominant variant for two months and after that, omicron BA.1 was rapidly replaced by omicron BA.2. This research is valuable because it provided information which is helpful to response diffusion of new variants. Compared to Delta variant, a large number of mutations in the spike gene(S) of Omicron variant were detected. It raises concerns about changes in pathogenicity and transmissibility in new COVID variants. Therefore, we should develop new strategies against emergence and diffusion of SARS-CoV-2 variants throughout monitoring appearance of the new variants, analyzing the characteristics of new things. In this respect, the results of this research are useful because they offered good basic data for appreciating characteristics of new COVID variants by monitoring the emergence of Delta and Omicron variant. Copyright © 2022 Journal of Bacteriology and Virology.

5.
Virus Evol ; 9(1): vead002, 2023.
Article in English | MEDLINE | ID: covidwho-2234493

ABSTRACT

To investigate genetic signatures of adaptation to the mink host, we characterised the evolutionary rate heterogeneity in mink-associated severe acute respiratory syndrome coronaviruses (SARS-CoV-2). In 2020, the first detected anthropozoonotic spillover event of SARS-CoV-2 occurred in mink farms throughout Europe and North America. Both spill-back of mink-associated lineages into the human population and the spread into the surrounding wildlife were reported, highlighting the potential formation of a zoonotic reservoir. Our findings suggest that the evolutionary rate of SARS-CoV-2 underwent an episodic increase upon introduction into the mink host before returning to the normal range observed in humans. Furthermore, SARS-CoV-2 lineages could have circulated in the mink population for a month before detection, and during this period, evolutionary rate estimates were between 3 × 10-3 and 1.05 × 10-2 (95 per cent HPD, with a mean rate of 6.59 × 10-3) a four- to thirteen-fold increase compared to that in humans. As there is evidence for unique mutational patterns within mink-associated lineages, we explored the emergence of four mink-specific Spike protein amino acid substitutions Y453F, S1147L, F486L, and Q314K. We found that mutation Y453F emerged early in multiple mink outbreaks and that mutations F486L and Q314K may co-occur. We suggest that SARS-CoV-2 undergoes a brief, but considerable, increase in evolutionary rate in response to greater selective pressures during species jumps, which may lead to the occurrence of mink-specific mutations. These findings emphasise the necessity of ongoing surveillance of zoonotic SARS-CoV-2 infections in the future.

6.
Springer Protocols Handbooks ; : 151-160, 2022.
Article in English | EMBASE | ID: covidwho-2173510

ABSTRACT

Turkey coronaviral enteritis caused by turkey coronavirus (TCoV) continues to infect turkey flocks, resulting in significant economic loss. Determining and understanding genetic relationships among different TCoV isolates or strains is important for controlling the disease. Using two-step RT-PCR assays that amplify the full length of TCoV spike (S) gene, TCoV isolates can be sequenced, analyzed, and genotyped. Described in this chapter is the protocol on PCR amplification and sequencing analysis of full-length TCoV S gene. Such protocol is useful in molecular epidemiology for establishing an effective strategy to control the transmission of TCoV among turkey flocks. Copyright © Springer Science+Business Media New York 2016

7.
Springer Protocols Handbooks ; : 139-150, 2022.
Article in English | EMBASE | ID: covidwho-2173509

ABSTRACT

Turkey coronavirus (TCoV) infection causes acute atrophic enteritis in turkey poults, leading to significant economic loss in the turkey industry. Rapid detection, differentiation, and quantitation of TCoV are critical to the diagnosis and control of the disease. A specific one-step real-time reverse transcription-polymerase chain reaction (RT-PCR) assay using TCoV-specific primers and dual-labeled fluorescent probe for detection and quantitation of TCoV in feces and intestine tissues is described in this chapter. The fluorogenic probe labeled with a reporter dye (FAM, 6-carboxytetramethylrhodamine) and a quencher dye (Absolute QuencherTM) was designed to bind to a 186 base-pair fragment flanked by the two PCR primers targeting the 3' end of spike gene (S2) of TCoV. The assay is highly specific and sensitive and can quantitate between 102 and 1010 copies/mL of viral genome. It is useful in monitoring the progression of TCoV-induced atrophic enteritis in the turkey flocks. Copyright © 2016 Springer Science+Business Media New York.

8.
Springer Protocols Handbooks ; : 131-138, 2022.
Article in English | EMBASE | ID: covidwho-2173508

ABSTRACT

A multiplex polymerase chain reaction (PCR) method for differential detection of turkey coronavirus (TCoV), infectious bronchitis virus (IBV), and bovine coronavirus (BCoV) is presented in this chapter. Primers are designed from the conserved or variable regions of nucleocapsid (N) or spike (S) protein genes of TCoV, IBV, and BCoV and used in the same PCR reaction. Reverse transcription followed by PCR reaction is used to amplify a portion of N or S gene of the corresponding coronaviruses. Two PCR products, a 356-bp band corresponding to N gene and a 727-bp band corresponding to S gene, are obtained for TCoV. In contrast, one PCR product of 356 bp corresponding to a fragment of N gene is obtained for IBV strains and one PCR product of 568 bp corresponding to a fragment of S gene is obtained for BCoV. Copyright © Springer Science+Business Media New York 2016.

9.
Front Microbiol ; 13: 1023847, 2022.
Article in English | MEDLINE | ID: covidwho-2123429

ABSTRACT

Human coronaviruses (HCoVs) HCoV-NL63, HCoV-229E, HCoV-HKU1 and HCoV-OC43 have been circulated in the human population worldwide, and they are associated with a broad range of respiratory diseases with varying severity. However, there are neither effective therapeutic drugs nor licensed vaccines available for the treatment and prevention of infections by the four HCoVs. In this study, we collected nasopharyngeal aspirates of children hospitalized for respiratory tract infection in China during 2014-2018 and conducted next-generation sequencing. Sequences of four HCoVs were then selected for an in-depth analysis. Genome sequences of 2 HCoV-NL63, 8 HCoV-229E, 2 HCoV-HKU1, and 6 HCoV-OC43 were obtained. Based on the full-length S gene, a strong temporal signal was found in HCoV-229E and the molecular evolutionary rate was 6 × 10-4 substitutions/site/year. Based on the maximum-likelihood (ML) phylogenetic tree of complete S gene, we designated H78 as a new sub-genotype C2 of HCoV-HKU1, and the obtained P43 sequence was grouped into the reported novel genotype K of HCoV-OC43 circulating in Guangzhou, China. Based on the complete genome, potential recombination events were found to occur as two phenomena, namely intraspecies and interspecies. Moreover, we observed two amino acid substitutions in the S1 subunit of obtained HCoV-NL63 (G534V) and HCoV-HKU1 (H512R), while residues 534 and 512 are important for the binding of angiotensin-converting enzyme 2 and neutralizing antibodies, respectively. Our findings might provide a clue for the molecular evolution of the four HCoVs and help in the early diagnosis, treatment and prevention of broad-spectrum HCoV infection.

10.
BMC Vet Res ; 18(1): 392, 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2108779

ABSTRACT

BACKGROUND: Porcine epidemic diarrhea virus (PEDV), an enteric coronavirus, has become the major causative agent of acute gastroenteritis in piglets since 2010 in China. RESULTS: In the current study, 91 complete spike (S) gene sequences were obtained from PEDV positive samples collected from 17 provinces in China from March 2020 to March 2021. A phylogenetic analysis showed that 92.3% (84 out of 91) of the identified strains belonged to GII subtype, while 7.7% (7 out of 91) were categorized as S-INDEL like strains and grouped within GI-c clade. Based on a recombination analysis, six of S-INDEL like strains were recombinant strains originated from S-INDEL strain FR/001/2014 and virulent strain AJ1102. In addition, PEDV variant strains (CH/GDMM/202012, CH/GXDX/202010 et al) carrying novel insertions (360QGRKS364 and 1278VDVF1281) in the S protein were observed. Furthermore, the deduced amino acid sequences for the S protein showed that multiple amino acid substitutions in the antigenic epitopes in comparison with the vaccine strains. CONCLUSIONS: In conclusion, these data provide novel molecular evidence on the epidemiology and molecular diversity of PEDV in 2020-2021. This information may help design a strategy for controlling and preventing the prevalence of PEDV variant strains in China.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Phylogeny , Swine Diseases/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Amino Acid Sequence , China/epidemiology , Spike Glycoprotein, Coronavirus/genetics
11.
J Vet Med Sci ; 84(9): 1157-1163, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-2021433

ABSTRACT

Infectious bronchitis virus (IBV) is the causative agent of infectious bronchitis (IB) in chickens. There is a correlation between cross-protection and percentage of similarity between nucleotide sequences encoding the S1 subunit, which is responsible for generating neutralizing and serotype-specific antibodies. Therefore, RT-PCR is commonly used to amplify the IBV-S1 gene following DNA sequencing in order to predict the efficacy of vaccines against IBV strains. We successfully enhanced the sensitivity for detection of the IBV-S1 gene by second PCR after purification of the 1st RT-PCR product. Using that method, we obtained detailed information on the prevalence of IBV on poultry farms in Gifu Prefecture, Japan. The IBV-S1 gene detection method used in the current study will enable accurate information on the prevalence of IBV in Japan to be obtained.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Animals , Chickens , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Farms , Japan/epidemiology , Poultry , Poultry Diseases/diagnosis , Poultry Diseases/epidemiology , Poultry Diseases/prevention & control , Reverse Transcriptase Polymerase Chain Reaction/veterinary
12.
Front Public Health ; 10: 974667, 2022.
Article in English | MEDLINE | ID: covidwho-2022999

ABSTRACT

Next Generation Sequencing (NGS) is the gold standard for the detection of new variants of SARS-CoV-2 including those which have immune escape properties, high infectivity, and variable severity. This test is helpful in genomic surveillance, for planning appropriate and timely public health interventions. But labs with NGS facilities are not available in small or medium research settings due to the high cost of setting up such a facility. Transportation of samples from many places to few centers for NGS testing also produces delays due to transportation and sample overload leading in turn to delays in patient management and community interventions. This becomes more important for patients traveling from hotspot regions or those suspected of harboring a new variant. Another major issue is the high cost of NGS-based tests. Thus, it may not be a good option for an economically viable surveillance program requiring immediate result generation and patient follow-up. The current study used a cost-effective facility which can be set up in a common research lab and which is replicable in similar centers with expertise in Sanger nucleotide sequencing. More samples can be processed at a time and can generate the results in a maximum of 2 days (1 day for a 24 h working lab). We analyzed the nucleotide sequence of the Receptor Binding Domain (RBD) region of SARS-CoV-2 by the Sanger sequencing using in-house developed methods. The SARS-CoV-2 variant surveillance was done during the period of March 2021 to May 2022 in the Northern region of Kerala, a state in India with a population of 36.4 million, for implementing appropriate timely interventions. Our findings broadly agree with those from elsewhere in India and other countries during the period.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Humans , SARS-CoV-2/genetics
13.
Viruses ; 14(5)2022 05 17.
Article in English | MEDLINE | ID: covidwho-1903483

ABSTRACT

As previously demonstrated by our research group, the oral multicomponent drug Xraphconn® containing GS-441524 was effective at curing otherwise fatal feline infectious peritonitis (FIP) in 18 feline coronavirus (FCoV)-infected cats. The aims of the current study were to investigate, using samples from the same animals as in the previous study, (1) the effect of treatment on fecal viral RNA shedding; (2) the presence of spike gene mutations in different body compartments of these cats; and (3) viral RNA shedding, presence of spike gene mutations, and anti-FCoV antibody titers in samples of 12 companion cats cohabitating with the treated cats. Eleven of the eighteen treated FIP cats (61%) were shedding FCoV RNA in feces within the first three days after treatment initiation, but all of them tested negative by day 6. In one of these cats, fecal shedding reoccurred on day 83. Two cats initially negative in feces were transiently positive 1-4 weeks into the study. The remaining five cats never shed FCoV. Viral RNA loads in feces decreased with time comparable with those in blood and effusion. Specific spike gene mutations linked to systemic FCoV spread were consistently found in blood and effusion from treated FIP cats, but not in feces from treated or companion cats. A new mutation that led to a not yet described amino acid change was identified, indicating that further mutations may be involved in the development of FIP. Eight of the twelve companion cats shed FCoV in feces. All but one of the twelve companion cats had anti-FCoV antibodies. Oral treatment with GS-441524 effectively decreased viral RNA loads in feces, blood, and effusion in cats with FIP. Nonetheless, re-shedding can most likely occur if cats are re-exposed to FCoV by their companion cats.


Subject(s)
Coronavirus, Feline , Feline Infectious Peritonitis , Adenosine/analogs & derivatives , Animals , Cats , Coronavirus, Feline/genetics , Feces , Feline Infectious Peritonitis/drug therapy , Furans , Mutation , RNA, Viral/genetics
14.
Microb Pathog ; 166: 105548, 2022 May.
Article in English | MEDLINE | ID: covidwho-1799780

ABSTRACT

Canine coronavirus (CCoV) is generally thought of as a mild, but highly contagious, enteritis of young dogs. This study was to investigate the molecular detection and characteristics of CCoV in Chengdu city, Southwest China. 218 canine fecal samples were collected from four animal hospitals and one animal shelter from 2020 to 2021. Fifty-nine CCoV-positive samples were detected by RT-PCR, including 40 CCoV-I, 25 CCoV-IIa, one CCoV-IIb and 10 untyped. To further analyze the genetic diversity of CCoV, we amplified ten complete spike (S) genes, including four CCoV-I and six CCoV-II strains. The amino acid sequence obtained in this study revealed 85.95% ± 12.55% homology with the reference strains. Moreover, in the N-terminal structural domain, there were two amino acid insertions (17QQ18) in two strains of CCoV-I and four amino acid insertions (95IGTN98) in CCoV-IIb strain. Interestingly, we identified that the S1/S2 cleavage site of the S protein of CCoV strains (SWU-SSX3 and SWU-SSX10) were consistent with feline coronavirus (FCoV). In the evolutionary tree, a strain of CCoV-I (SWU-SSX10) was found to be more closely related to FCoV, while SWU-SSX7 of CCoV-IIb was more closely related to coronavirus from the Chinese ferret badger. In addition, for the first time, recombination in a CCoV-IIb strain was found to occur between two subtypes occurring in the C domain of the S1 subunit, with a breakpoint starting at 2141 nt. The results enriched the epidemiological information of CCoV and provided an important reference for the prevention of CCoV in Chengdu city, Southwest China.


Subject(s)
Coronavirus, Canine , Dog Diseases , Amino Acids/genetics , Animals , Coronavirus, Canine/classification , Coronavirus, Canine/genetics , Dog Diseases/epidemiology , Dog Diseases/virology , Dogs , Phylogeny
15.
Int J Mol Sci ; 23(6)2022 Mar 17.
Article in English | MEDLINE | ID: covidwho-1760649

ABSTRACT

For tiling of the SARS-CoV-2 genome, the ARTIC Network provided a V4 protocol using 99 pairs of primers for amplicon production and is currently the widely used amplicon-based approach. However, this technique has regions of low sequence coverage and is labour-, time-, and cost-intensive. Moreover, it requires 14 pairs of primers in two separate PCRs to obtain spike gene sequences. To overcome these disadvantages, we proposed a single PCR to efficiently detect spike gene mutations. We proposed a bioinformatic protocol that can process FASTQ reads into spike gene consensus sequences to accurately call spike protein variants from sequenced samples or to fairly express the cases of missing amplicons. We evaluated the in silico detection rate of primer sets that yield amplicon sizes of 400, 1200, and 2500 bp for spike gene sequencing of SARS-CoV-2 to be 59.49, 76.19, and 92.20%, respectively. The in silico detection rate of our proposed single PCR primers was 97.07%. We demonstrated the robustness of our analytical protocol against 3000 Oxford Nanopore sequencing runs of distinct datasets, thus ensuring high-integrity sequencing of spike genes for variant SARS-CoV-2 determination. Our protocol works well with the data yielded from versatile primer designs, making it easy to determine spike protein variants.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Computational Biology , Genome, Viral , Genomics/methods , Humans , Mutation , Mutation Rate , Phylogeny , SARS-CoV-2/classification , Sequence Analysis, DNA
16.
Viruses ; 14(3)2022 03 17.
Article in English | MEDLINE | ID: covidwho-1753688

ABSTRACT

Documenting the circulation dynamics of SARS-CoV-2 variants in different regions of the world is crucial for monitoring virus transmission worldwide and contributing to global efforts towards combating the pandemic. Tunisia has experienced several waves of COVID-19 with a significant number of infections and deaths. The present study provides genetic information on the different lineages of SARS-CoV-2 that circulated in Tunisia over 17 months. Lineages were assigned for 1359 samples using whole-genome sequencing, partial S gene sequencing and variant-specific real-time RT-PCR tests. Forty-eight different lineages of SARS-CoV-2 were identified, including variants of concern (VOCs), variants of interest (VOIs) and variants under monitoring (VUMs), particularly Alpha, Beta, Delta, A.27, Zeta and Eta. The first wave, limited to imported and import-related cases, was characterized by a small number of positive samples and lineages. During the second wave, a large number of lineages were detected; the third wave was marked by the predominance of the Alpha VOC, and the fourth wave was characterized by the predominance of the Delta VOC. This study adds new genomic data to the global context of COVID-19, particularly from the North African region, and highlights the importance of the timely molecular characterization of circulating strains.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genome, Viral , Humans , Molecular Epidemiology , SARS-CoV-2/genetics , Tunisia/epidemiology
17.
Microb Genom ; 8(3)2022 03.
Article in English | MEDLINE | ID: covidwho-1746154

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is adaptively evolving to ensure its persistence within human hosts. It is therefore necessary to continuously monitor the emergence and prevalence of novel variants that arise. Importantly, some mutations have been associated with both molecular diagnostic failures and reduced or abrogated next-generation sequencing (NGS) read coverage in some genomic regions. Such impacts are particularly problematic when they occur in genomic regions such as those that encode the spike (S) protein, which are crucial for identifying and tracking the prevalence and dissemination dynamics of concerning viral variants. Targeted Sanger sequencing presents a fast and cost-effective means to accurately extend the coverage of whole-genome sequences. We designed a custom set of primers to amplify a 401 bp segment of the receptor-binding domain (RBD) (between positions 22698 and 23098 relative to the Wuhan-Hu-1 reference). We then designed a Sanger sequencing wet-laboratory protocol. We applied the primer set and wet-laboratory protocol to sequence 222 samples that were missing positions with key mutations K417N, E484K, and N501Y due to poor coverage after NGS sequencing. Finally, we developed SeqPatcher, a Python-based computational tool to analyse the trace files yielded by Sanger sequencing to generate consensus sequences, or take preanalysed consensus sequences in fasta format, and merge them with their corresponding whole-genome assemblies. We successfully sequenced 153 samples of 222 (69 %) using Sanger sequencing and confirmed the occurrence of key beta variant mutations (K417N, E484K, N501Y) in the S genes of 142 of 153 (93 %) samples. Additionally, one sample had the Y508F mutation and four samples the S477N. Samples with RT-PCR Ct scores ranging from 13.85 to 37.47 (mean=25.70) could be Sanger sequenced efficiently. These results show that our method and pipeline can be used to improve the quality of whole-genome assemblies produced using NGS and can be used with any pairs of the most used NGS and Sanger sequencing platforms.


Subject(s)
Genome, Viral , SARS-CoV-2/genetics , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing , Mutation
18.
Front Med (Lausanne) ; 8: 822633, 2021.
Article in English | MEDLINE | ID: covidwho-1649731

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an emerging life-threatening pulmonary disease caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which originated in Wuhan, Hubei Province, China, in December 2019. COVID-19 develops after close contact via inhalation of respiratory droplets containing SARS-CoV-2 during talking, coughing, or sneezing by asymptomatic, presymptomatic, and symptomatic carriers. This virus evolved over time, and numerous genetic variants have been reported to have increased disease severity, mortality, and transmissibility. Variants have also developed resistance to antivirals and vaccination and can escape the immune response of humans. Reverse transcription polymerase chain reaction (RT-PCR) is the method of choice among diagnostic techniques, including nucleic acid amplification tests (NAATs), serological tests, and diagnostic imaging, such as computed tomography (CT). The limitation of RT-PCR is that it cannot distinguish fragmented RNA genomes from live transmissible viruses. Thus, SARS-CoV-2 isolation by using cell culture has been developed and makes important contributions in the field of diagnosis, development of antivirals, vaccines, and SARS-CoV-2 virology research. In this research, two SARS-CoV-2 strains were isolated from four RT-PCR-positive nasopharyngeal swabs using VERO E6 cell culture. One isolate was cultured successfully with a blind passage on day 3 post inoculation from a swab with a Ct > 35, while the cells did not develop cytopathic effects without a blind passage until day 14 post inoculation. Our results indicated that infectious SARS-CoV-2 virus particles existed, even with a Ct > 35. Cultivable viruses could provide additional consideration for releasing the patient from quarantine. The results of the whole genome sequencing and bioinformatic analysis suggested that these two isolates contain a spike 68-76del+spike 675-679del double-deletion variation. The double deletion was confirmed by amplification of the regions spanning the spike gene deletion using Sanger sequencing. Phylogenetic analysis revealed that this double-deletion variant was rare (one per million in public databases, including GenBank and GISAID). The impact of this double deletion in the spike gene on the SARS-CoV-2 virus itself as well as on cultured cells and/or humans remains to be further elucidated.

19.
Viruses ; 14(2)2022 01 24.
Article in English | MEDLINE | ID: covidwho-1650825

ABSTRACT

We explored the molecular evolution of the spike gene after the administration of anti-spike monoclonal antibodies in patients with mild or moderate forms of COVID-19. Four out of the 13 patients acquired a mutation during follow-up; two mutations (G1204E and E406G) appeared as a mixture without clinical impact, while the Q493R mutation emerged in two patients (one receiving bamlanivimab and one receiving bamlanivimab/etesevimab) with fatal outcomes. Careful virological monitoring of patients treated with mAbs should be performed, especially in immunosuppressed patients.


Subject(s)
Antibodies, Monoclonal/therapeutic use , COVID-19/therapy , Evolution, Molecular , Immune Evasion , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Aged , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing/therapeutic use , COVID-19/immunology , Drug Combinations , Female , Humans , Immunotherapy/statistics & numerical data , Male , Middle Aged , Spike Glycoprotein, Coronavirus/immunology
20.
J Clin Virol ; 146: 105049, 2022 01.
Article in English | MEDLINE | ID: covidwho-1540752

ABSTRACT

BACKGROUND: The highly transmissible Delta variant of SARS-CoV-2 (B.1.617.2), first identified in India, is currently replacing pre-existing variants in many parts of the world. To help guide public health policies it is important to monitor efficiently its spread. Genome sequencing is the gold standard for identification of Delta, but is time-consuming, expensive, and unavailable in many regions. OBJECTIVE: To develop and evaluate a rapid, simple and inexpensive alternative to sequencing for Delta identification. METHODS: A double-mismatch allele-specific RT-PCR (DMAS-RT-PCR) was developed. The technique exploits allele-specific primers, targeting two spike gene mutations, L452R and T478K, within the same amplicon. The discriminatory power of each primer was enhanced by an additional mismatch located at the fourth nucleotide from the 3' end. Specificity was assessed by testing well characterised cell culture-derived viral isolates and clinical samples, most of which had previously been fully sequenced. RESULTS: In all cases the results of viral genotyping by DMAS-RT-PCR were entirely concordant with the results of sequencing, and the assay was shown to discriminate reliably between the Delta variant and other variants (Alpha and Beta), and 'wild-type' SARS-CoV-2. Influenza A and RSV were non-reactive in the assay. The sensitivity of DMAS-RT-PCR matched that of the diagnostic SARS-CoV-2 RT-qPCR screening assay. Several samples that could not be sequenced due to insufficient virus were successfully genotyped by DMAS-RT-PCR. CONCLUSION: The method we describe would be simple to establish in any laboratory that can conduct PCR assays and should greatly facilitate monitoring of the spread of the Delta variant globally.


Subject(s)
COVID-19 , SARS-CoV-2 , Alleles , Humans , Real-Time Polymerase Chain Reaction , Reverse Transcription , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL